Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

A Complete Assessment of Dopamine Receptor-Ligand Interactions through Computational Methods

Version 1 : Received: 5 February 2019 / Approved: 6 February 2019 / Online: 6 February 2019 (13:54:13 CET)

A peer-reviewed article of this Preprint also exists.

Bueschbell, B.; Barreto, C.A.V.; Preto, A.J.; Schiedel, A.C.; Moreira, I.S. A Complete Assessment of Dopamine Receptor- Ligand Interactions through Computational Methods. Molecules 2019, 24, 1196. Bueschbell, B.; Barreto, C.A.V.; Preto, A.J.; Schiedel, A.C.; Moreira, I.S. A Complete Assessment of Dopamine Receptor- Ligand Interactions through Computational Methods. Molecules 2019, 24, 1196.

Abstract

Background: Selectively targeting dopamine receptors has been a persistent challenge in the last years for the development of new treatments to combat the large variety of diseases evolving these receptors. Although, several drugs have been successfully brought to market, the subtype-specific binding mode on a molecular basis has not been fully elucidated. Methods: Homology modeling and molecular dynamics were applied to construct robust conformational models of all dopamine receptor subtypes (D1-like and D2-like receptors). Fifteen structurally diverse ligands were docked to these models. Contacts at the binding pocket were fully described in order to reveal new structural findings responsible for DR sub-type specificity. Results: We showed that the number of conformations for a receptor:ligand complex was associated to unspecific interactions > 2.5 Å and hydrophobic contacts, while the decoys binding energy was influenced by specific electrostatic interactions. Known residues such as 3.32Asp, the serine microdomain and the aromatic microdomain were found interacting in a variety of modes (HB, SB, π-stacking). Purposed TM2-TM3-TM7 microdomain was found to form a hydrophobic network involving Orthosteric Binding Pocket (OBP) and Secondary Binding Pocket (SBP). T-stacking interactions revealed as especially relevant for some large ligands such as apomorphine, risperidone or aripiprazole. Conclusions: This in silico approach was successful in showing known receptor-ligand interactions as well as in determining unique combinations of interactions, key for the design of more specific ligands.

Keywords

Dopamine receptors, Molecular Docking, Molecular Dynamics, Receptor-Ligand Interactions

Subject

Chemistry and Materials Science, Medicinal Chemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.