Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Water Availability Assessment of Shale Gas Production in the Weiyuan Play, China

Version 1 : Received: 17 January 2019 / Approved: 21 January 2019 / Online: 21 January 2019 (08:59:29 CET)

A peer-reviewed article of this Preprint also exists.

Wu, X.; Xia, J.; Guan, B.; Yan, X.; Zou, L.; Liu, P.; Yang, L.; Hong, S.; Hu, S. Water Availability Assessment of Shale Gas Production in the Weiyuan Play, China. Sustainability 2019, 11, 940. Wu, X.; Xia, J.; Guan, B.; Yan, X.; Zou, L.; Liu, P.; Yang, L.; Hong, S.; Hu, S. Water Availability Assessment of Shale Gas Production in the Weiyuan Play, China. Sustainability 2019, 11, 940.

Abstract

Innovations and improvements in hydraulic fracturing and horizontal well technologies have contributed to the success of the shale gas industry; however, the industry is also challenged by freshwater use and environmental health issues. Increasing water impact makes precise quantification of water consumption important. The objective in this study was to better understand water sustainability and availability of the projected shale gas from 2018 to 2030 in the Weiyuan play, China. The water footprint framework was used to quantify the potential water use and environmental impacts on different time scales. The results showed that the water use per well ranged from 11351.3 to 60664.73 m3, with a median of 36013.94 m3, totaling ~3.44 Mm3 for 97 wells. Yearly evaluation results showed that the gray water footprint was the main contributor and accounted for 83.82% to 96.76%, which was dependent on different scenarios of treatment percentages. The monthly environmental impact results indicated that the annual streamflow statistics were more likely to prevent water withdrawal. Water quality issues may be alleviated through recycling and retreatment measures that improve current waste water management strategies. Resource regulators should manage their water resources by matching water demand to water availability or replenishment.

Keywords

water availability; shale gas; water sustainability; Weiyuan play

Subject

Environmental and Earth Sciences, Environmental Science

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.