Preprint
Article

This version is not peer-reviewed.

PKM2 Knockdown Induces Autophagic Cell Death via the AKT/mTOR Pathway in Human Prostate Cancer Cells

Submitted:

01 January 2019

Posted:

03 January 2019

You are already at the latest version

Abstract
Pyruvate kinase M2 (PKM2) is essential for aerobic glycolysis and is highly expressed in various cancer tissues. Although high PKM2 expression is observed in prostate cancer tissues, its functional role in cancer metabolism is unclear. Here, we investigated the role of PKM2 in regulating autophagy and its associated pathways in prostate cancer cells. PKM2 expression was silenced using various PKM2 small interfering RNAs (siRNAs) and then we measured PKM2-related cellular pathways associated with autophagy. PKM2 siRNA-transfected prostate cancer cells showed significantly reduced viability. Acridine orange staining and immunoblotting analysis showed that PKM2 downregulation markedly increased autophagic cell death. Results of western blotting analysis showed that PKM2 knockdown affected protein kinase B/mechanistic target of rapamycin 1 pathway, which consequently downregulated the expression of glycolytic enzymes lactate dehydrogenase A and glucose transporter 1. To the best of our knowledge, this is the first study to show that PKM2 inhibition alters cancer cell metabolism and induces autophagy. Thus, the present study provides a strategy for the development of PKM2-targeted novel anticancer drugs for the treatment of prostate cancer.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated