Preprint Article Version 1 This version is not peer-reviewed

Influence of the Fibre Distribution and Orientation in the Fracture Behaviour of Polyolefin Fibre Reinforced Concrete

Version 1 : Received: 4 December 2018 / Approved: 5 December 2018 / Online: 5 December 2018 (07:57:24 CET)

A peer-reviewed article of this Preprint also exists.

Enfedaque, A.; Alberti, M.G.; Gálvez, J.C. Influence of Fiber Distribution and Orientation in the Fracture Behavior of Polyolefin Fiber-Reinforced Concrete. Materials 2019, 12, 220. Enfedaque, A.; Alberti, M.G.; Gálvez, J.C. Influence of Fiber Distribution and Orientation in the Fracture Behavior of Polyolefin Fiber-Reinforced Concrete. Materials 2019, 12, 220.

Journal reference: Materials 2019, 12, 220
DOI: 10.3390/ma12020220

Abstract

Polyolefin fibre reinforced concrete (PFRC) has become an attractive alternative to steel for the reinforcement of concrete elements mainly due to its chemical stability and the residual strengths that can be reached with lower weights. The use of polyolefin fibres can meet the requirements in the standards, although the main constitutive relations are based on the experience with steel fibres. Therefore, the structural contributions of the fibres should be assessed by inverse analysis. In this study, the fibre dosage has been fixed at 6kg/m³ and both self-compacting concrete and conventional concrete have been used to compare the influence of the positioning of the fibres. An idealized homogeneous distribution of the fibres with such fibres crossing from side to side of the specimen has been added to self-compacting concrete. The experimental results of three-point bending tests on notched specimens have been reproduced by using the cohesive crack approach. Hence, the constitutive relations were found. The significance of this research relies on the verification of the formulations found to build the constitutive relations. Moreover, with these results it is possible to establish the higher threshold of the performance of PFRC and the difficulties of limiting the first unloading branch typical of fracture tests of PFRC.

Subject Areas

fibre reinforced concrete; polyolefin fibres; fibre distribution; fracture behaviour; structural fibres

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.