Preprint
Article

This version is not peer-reviewed.

Comparing Supervised Machine Learning Strategies and Linguistic Features to Search for Very Negative Opinions

A peer-reviewed article of this preprint also exists.

Submitted:

16 November 2018

Posted:

19 November 2018

You are already at the latest version

Abstract
In this paper, we examine the performance of several classifiers in the process of searching for very negative opinions. More precisely, we do an empirical study that analyzes the influence of three types of linguistic features (n-grams, word embeddings, and polarity lexicons) and their combinations when they are used to feed different supervised machine learning classifiers: Support Vector Machine (SVM), Naive Bayes (NB), and Decision Tree (DT).
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated