Preprint
Article

This version is not peer-reviewed.

Numerical and Experimental Analyses of Three-Dimensional Unsteady Flow Around a Micro-Pillar Subjected to Rotational Vibration

A peer-reviewed article of this preprint also exists.

Submitted:

06 November 2018

Posted:

07 November 2018

You are already at the latest version

Abstract
The steady streaming (SS) phenomenon is gaining increased attention in the microfluidics community, because it can generate net mass flow from the zero-mean vibration. We developed numerical simulation and experimental measurement tools to analyze this vibration induced flow, which has been challenging due to its unsteady nature. Validity of these analysis methods is confirmed by comparing the three-dimensional (3D) flow field induced around a cylindrical micropillar under circular vibration. In the numerical modeling, we directly solved the flow in the Lagrangian frame so that the substrate with a micropillar becomes stationary, and the result was converted to the Eulerian frame to compare them with the experimental results. The present approach enables to avoid the introduction of moving boundary or small perturbation approximation. The flow field obtained by the micro particle image velocimetry (PIV) measurement supported the three-dimensionality observed in the numerical results, which could be important for controlling the mass transport and manipulating particulate objects in the microfluidic systems.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated