Preprint
Article

High Impedance Fault Detection in MV Distribution Network using Discrete Wavelet Transform and Adaptive Neuro-Fuzzy Inference System

Submitted:

29 October 2018

Posted:

29 October 2018

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
This paper presents a method to detect and classify the high impedance fault that occur in the medium voltage distribution network using discrete wavelet transform (DWT) and adaptive neuro-fuzzy inference system (ANFIS). The network is designed using Matlab software and various faults such as high impedance, symmetrical and unsymmetrical fault have been applied to study the effectiveness of the proposed ANFIS classifier method. This is achieved by training the ANFIS classifier using the features (standard deviation values) extracted from the three phase fault current signal by DWT technique for various cases of fault with different values of fault resistance in the system. The success and discrimination rate obtained for identifying and classifying the high impedance fault from the proffered method is 100% whereas the values are 66.7% and 85% respectively for conventional fuzzy based approach. The results indicate that the proposed method is more efficient to identify and discriminate the high impedance fault accurately from other power system faults in the system.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

733

Views

329

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated