PreprintArticleVersion 1Preserved in Portico This version is not peer-reviewed
Zircon Xenocrysts from Cenozoic Alkaline Basalts of the Ratanakiri Volcanic Province (Cambodia), Southeast Asia—Trace Element Geochemistry, O-Hf Isotopic Composition, U-Pb and (U-Th)/He Geochronology—Revelations into the Underlying Lithospheric Mantle
Piilonen, P.C.; Sutherland, F.L.; Danišík, M.; Poirier, G.; Valley, J.W.; Rowe, R. Zircon Xenocrysts from Cenozoic Alkaline Basalts of the Ratanakiri Volcanic Province (Cambodia), Southeast Asia—Trace Element Geochemistry, O-Hf Isotopic Composition, U-Pb and (U-Th)/He Geochronology—Revelations into the Underlying Lithospheric Mantle. Minerals2018, 8, 556.
Piilonen, P.C.; Sutherland, F.L.; Danišík, M.; Poirier, G.; Valley, J.W.; Rowe, R. Zircon Xenocrysts from Cenozoic Alkaline Basalts of the Ratanakiri Volcanic Province (Cambodia), Southeast Asia—Trace Element Geochemistry, O-Hf Isotopic Composition, U-Pb and (U-Th)/He Geochronology—Revelations into the Underlying Lithospheric Mantle. Minerals 2018, 8, 556.
Piilonen, P.C.; Sutherland, F.L.; Danišík, M.; Poirier, G.; Valley, J.W.; Rowe, R. Zircon Xenocrysts from Cenozoic Alkaline Basalts of the Ratanakiri Volcanic Province (Cambodia), Southeast Asia—Trace Element Geochemistry, O-Hf Isotopic Composition, U-Pb and (U-Th)/He Geochronology—Revelations into the Underlying Lithospheric Mantle. Minerals2018, 8, 556.
Piilonen, P.C.; Sutherland, F.L.; Danišík, M.; Poirier, G.; Valley, J.W.; Rowe, R. Zircon Xenocrysts from Cenozoic Alkaline Basalts of the Ratanakiri Volcanic Province (Cambodia), Southeast Asia—Trace Element Geochemistry, O-Hf Isotopic Composition, U-Pb and (U-Th)/He Geochronology—Revelations into the Underlying Lithospheric Mantle. Minerals 2018, 8, 556.
Abstract
Zircon xenocrysts from alkali basalts in Ratanakiri Province, Cambodia, represent a unique low-Hf zircon, within a 12,000 km long Indo-Pacific megacryst zone. Colourless, yellow, brown and red crystals ({100}, {101}, subordinate {211}, {1103}), with hopper growth and corrosion features, range up to 20 cm in size. Zircon chemistry implicates juvenile, Zr-saturated, mantle-derived alkaline melt (Hf 0.6–0.7 wt%, Y <0.2 wt%, U+Th+REE <600 ppm, Zr/Hf 66–92, Eu/Eu*N ~ 1, positive Ce/Ce*N, HREE enrichment). Incompatible element depletion with increasing Yb/SmN from core to rim at ~ constant Hf suggests single stage growth. Ti-in-zircon temperatures (~570–740 °C) are lower than predicted by crystal morphology (800–900 °C) and decrease from core to rim (DT = 10–50 °C). The d18O values (4.88 to 5.01‰ VSMOW) are relatively low for xenocrysts from the zircon Indo-Pacific zone (ZIP). The 176Hf/177Hf values (+ εHf 4.5–10.2) give TDepleted Mantle model source ages of 260–462 Ma and TCrustalages of 391–754 Ma. The source magmas reflect variably depleted lithospheric mantle with little supracrustal input. Zircon U-Pb (0.88–1.56 Ma) and (U-Th)/He (0.86–1.02 Ma) ages are older than host basalt ages (~0.7 Ma), suggesting limited residence before transport. Zircon genesis suggests Zr-saturated, Al-undersaturated, carbonatitic-influenced, low-degree partial melting (<1%) of peridotitic mantle at ~60 km beneath the Indochina terrane.
Environmental and Earth Sciences, Geochemistry and Petrology
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.