Preprint Review Version 1 This version is not peer-reviewed

Copper-Fructose Interactions: A Novel Mechanism in the Pathogenesis of NAFLD

Version 1 : Received: 18 October 2018 / Approved: 18 October 2018 / Online: 18 October 2018 (16:57:06 CEST)

A peer-reviewed article of this Preprint also exists.

Song, M.; Vos, M.B.; McClain, C.J. Copper-Fructose Interactions: A Novel Mechanism in the Pathogenesis of NAFLD. Nutrients 2018, 10, 1815. Song, M.; Vos, M.B.; McClain, C.J. Copper-Fructose Interactions: A Novel Mechanism in the Pathogenesis of NAFLD. Nutrients 2018, 10, 1815.

Journal reference: Nutrients 2018, 10, 1815
DOI: 10.3390/nu10111815

Abstract

Compelling epidemiologic data support the critical role of dietary fructose in the epidemic of obesity, metabolic syndrome and nonalcoholic fatty liver disease (NAFLD). The metabolic effects of fructose on the development of metabolic syndrome and NAFLD are not completely understood. High fructose intake impairs copper status, and copper-fructose interactions have been well documented in rats. Altered copper-fructose metabolism leads to exacerbated experimental metabolic syndrome and NAFLD. A growing body of evidence has demonstrated that copper levels are low in NAFLD patients. Moreover, hepatic and serum copper levels are inversely correlated with the severity of NAFLD. Thus, high fructose consumption and low copper availability are considered two important risk factors in NAFLD. However, the causal effect of copper-fructose interactions as well as the effects of fructose intake on copper status remain to be evaluated in humans. The aim of this review is to summarize the role of copper-fructose interactions in the pathogenesis of the metabolic syndrome and discuss the potential underlying mechanisms. This review will shed light on the role of copper homeostasis and high fructose intake and point to copper-fructose interactions as novel mechanisms in the fructose induced NAFLD.

Subject Areas

Copper; fructose; Kupffer cell (KC); iron; non-alcoholic fatty liver disease (NAFLD); metabolic syndrome; gut microbiota

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.