Preprint Article Version 1 This version is not peer-reviewed

Mass Balance of Novaya Zemlya Archipelago, Russian High Arctic, using Time-Variable Gravity from GRACE and Altimetry Data from ICESat and Cryosat-2

Version 1 : Received: 3 October 2018 / Approved: 3 October 2018 / Online: 3 October 2018 (14:37:48 CEST)

A peer-reviewed article of this Preprint also exists.

Ciracì, E.; Velicogna, I.; Sutterley, T.C. Mass Balance of Novaya Zemlya Archipelago, Russian High Arctic, Using Time-Variable Gravity from GRACE and Altimetry Data from ICESat and CryoSat-2. Remote Sens. 2018, 10, 1817. Ciracì, E.; Velicogna, I.; Sutterley, T.C. Mass Balance of Novaya Zemlya Archipelago, Russian High Arctic, Using Time-Variable Gravity from GRACE and Altimetry Data from ICESat and CryoSat-2. Remote Sens. 2018, 10, 1817.

Journal reference: Remote Sens. 2018, 10, 1817
DOI: 10.3390/rs10111817

Abstract

We examine the mass balance of the glaciers in the Novaya Zemlya Archipelago, located in the Russian High Arctic using time series of time-variable gravity from the NASA/DLR Gravity Recovery and Climate Experiment (GRACE) mission, laser altimetry data from the NASA Ice Cloud and land Elevation Satellite (ICESat) mission, and radar altimetry data from the ESA CryoSat-2 mission. We present a new algorithm for detecting changes in glacier elevation from these satellite altimetry data and evaluate its performance in the case Novaya Zemlya by comparing the results with GRACE. We find that the mass loss of Novaya Zemlya increased from 10±5 Gt/yr over 2003-2009 to 14±4 Gt/yr over 2010-2016, with a brief period of near mass balance between 2009 and 2011. The results are consistent across the gravimetric and altimetric methods. Furthermore, the analysis of elevation change from CryoSat-2 indicates that 60\% of the mass loss occurs at low elevation, where thinning rates are highest. We also find that marine-terminating glaciers in Novaya Zemlya are thinning significantly faster than land-terminating glaciers, which indicates an important role of ice dynamics of marine-terminating glaciers. We posit that the glacier changes have been caused by changes in atmospheric and ocean temperatures. We find that the increase in mass loss after 2010 is associated with a warming in air temperatures, which increased the surface melt rates. There is no enough information on the ocean temperature at the front of the glaciers to conclude on the role of the ocean, but we posit that the temperature of subsurface ocean waters must have increased during the observation period.

Subject Areas

Novaya Zemlya; Altimetry; Gravity; Russian High Arctic; Glaciers and Ice Caps; Remote Sensing; Climate Change;

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.