Preprint
Article

Mapping Informal Settlements in the Middle East Environment using an Object-Based Machine-Learning Approach

This version is not peer-reviewed.

Submitted:

12 September 2018

Posted:

12 September 2018

You are already at the latest version

Abstract
The identification of informal settlements in urban areas is an important step in developing and implementing pro-poor urban policies. Understanding when, where and who lives inside informal settlements is critical to efforts to improve their resilience. This study aims to analyse the capability of machine-learning (ML) methods to map informal areas in Jeddah, Saudi Arabia, using very-high-resolution (VHR) imagery and terrain data. Fourteen indicators of settlement characteristics were derived and mapped using an object-based ML approach and VHR imagery. These indicators were categorised according to three different spatial levels: environ, settlement and object. The most useful indicators for prediction were found to be density and texture measures, (with random forest (RF) relative importance measures of over 25% and 23% respectively). The success of this approach was evaluated using a small, fully independent validation dataset. Informal areas were mapped with an overall accuracy of 91%. Object-based ML as a hybrid approach performed better (8%) than object-based image analysis alone due to its ability to encompass all available geospatial levels.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

1226

Views

481

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated