Preprint
Article

Mean-Field Type Games between Two Players Driven by Backward Stochastic Differential Equations

Altmetrics

Downloads

412

Views

288

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

03 September 2018

Posted:

05 September 2018

You are already at the latest version

Alerts
Abstract
In this paper, mean-field type games between two players with backward stochastic dynamics are defined and studied. They make up a class of non-zero-sum differential games where the players' state dynamics solve backward stochastic differential equations (BSDEs) that depend on the marginal distributions of player states. Players try to minimize their individual cost functionals, also depending on the marginal state distributions. Under some regularity conditions, we derive necessary and sufficient conditions for existence of Nash equilibria. Player behavior is illustrated by numerical examples, and is compared to a centrally planned solution where the social cost, the sum of player costs, is minimized. The inefficiency of a Nash equilibrium, compared to socially optimal behavior, is quantified by the so-called price of anarchy. Numerical simulations of the price of anarchy indicate how the improvement in social cost achievable by a central planner depends on problem parameters.
Keywords: 
Subject: Computer Science and Mathematics  -   Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated