Preprint
Article

This version is not peer-reviewed.

Nernst Voltage Loss in Oxyhydrogen Fuel Cells

A peer-reviewed article of this preprint also exists.

Submitted:

04 September 2018

Posted:

04 September 2018

You are already at the latest version

Abstract
Normally, the Nernst voltage calculated from the concentration of the reaction gas in the flow channel is considered to be the ideal voltage (reversible voltage) of the oxyhydrogen fuel cell, but actually it will cause a concentration gradient when the reaction gas flows from the flow channel through the gas diffusion layer to the catalyst layer. The Nernst voltage loss in fuel cells in most of the current literature is thought to be due to the difference in concentration of reaction gas in the flow channel and concentration of reaction gas on the catalyst layer at the time when the high net current density is generated. Based on the Butler-Volmer equation in oxyhydrogen fuel cell, this paper demonstrates that the Nernst voltage loss is caused by the concentration difference of reaction gas in flow channel and on the catalytic layer at the time when equilibrium potential (Galvanic potential) of each electrode is generated.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated