Preprint Article Version 1 This version is not peer-reviewed

Castor Oil-Based Polyurethane Resin for Low-Density Composites with Bamboo Charcoal

Version 1 : Received: 22 August 2018 / Approved: 23 August 2018 / Online: 23 August 2018 (05:15:45 CEST)

A peer-reviewed article of this Preprint also exists.

Chen, Y.-C.; Tai, W. Castor Oil-Based Polyurethane Resin for Low-Density Composites with Bamboo Charcoal. Polymers 2018, 10, 1100. Chen, Y.-C.; Tai, W. Castor Oil-Based Polyurethane Resin for Low-Density Composites with Bamboo Charcoal. Polymers 2018, 10, 1100.

Journal reference: Polymers 2018, 10, 1100
DOI: 10.3390/polym10101100

Abstract

Polyurethane (PU) foam adhesives were prepared from castor oil as a polyol with isocyanate poly (4,4′-methylene diphenyl isocyanate) (PMDI) using a solvent-free process. The NCO/OH molar ratio used for the preparation of PU foams was 1.5. Water, organosiloxane and dibutyltin dilaurate were blowing agent, surfactant and catalyst, respectively. Effects of the ratio of blowing agent and catalyst were adjusted to optimize the properties. The results show that 4 wt% of castor oil of catalyst and blowing agent minimizes water absorption and maximizes volume expansion in the PU foams. FT-IR analysis shows that urethane bond was formed by hydroxyl group of castor oil and –NCO group of isocyanate PMDI. More blowing agent and catalyst could improve the volume expansion ratio and reduce water retention of PU foams. It was found that Moso bamboo charcoal (Phyllostachys pubescens) or/and China fir wood particle (Cunninghamia lanceolate) composites with setting densities of 500 and 600 kg/m3 can be prepared from optimized castor oil-based PU foam adhesive at 100 °C for 5 min under a pressure of 1.5 MPa. Increasing the amount of bamboo charcoal decreases the equilibrium moisture content, water absorption and internal bonding strength of the composite. Notably, bamboo charcoal composite exhibits excellent dimensional stability. The optimized density and bamboo charcoal percentages of the composite were 500 kg/m3 and 50 to 100%. The castor oil-based PU composites containing bamboo charcoal fulfilled the CNS 2215 standards for particleboard. This dimensionally stable, low-density bamboo charcoal composite has high potential to replace current indoor building materials.

Subject Areas

adhesive; bamboo charcoal; castor oil; composites; polyurethane

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.