Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Applications of Oxygen-Carrying Micro/Nanobubbles: a Potential Approach to Enhance Photodynamic Therapy and Photoacoustic Imaging

Version 1 : Received: 10 August 2018 / Approved: 11 August 2018 / Online: 11 August 2018 (18:49:18 CEST)

A peer-reviewed article of this Preprint also exists.

Khan, M.S.; Hwang, J.; Lee, K.; Choi, Y.; Kim, K.; Koo, H.-J.; Hong, J.W.; Choi, J. Oxygen-Carrying Micro/Nanobubbles: Composition, Synthesis Techniques and Potential Prospects in Photo-Triggered Theranostics. Molecules 2018, 23, 2210. Khan, M.S.; Hwang, J.; Lee, K.; Choi, Y.; Kim, K.; Koo, H.-J.; Hong, J.W.; Choi, J. Oxygen-Carrying Micro/Nanobubbles: Composition, Synthesis Techniques and Potential Prospects in Photo-Triggered Theranostics. Molecules 2018, 23, 2210.

Abstract

Microbubbles and nanobubbles can be prepared using various shells, such as phospholipids, polymers, proteins, and surfactants. They are echogenic and can be used as contrast agents for ultrasonic and photoacoustic imaging. These bubbles can be engineered in various sizes as vehicles for gas and drug delivery applications with novel properties and flexible structures. Hypoxic areas in tumors develop owing to an imbalance of oxygen supply and demand. In tumors, hypoxic regions have shown more resistance to chemotherapy, radiotherapy, and photodynamic therapies. The efficacy of photodynamic therapy depends on the availability of oxygen in the tumor to generate reactive oxygen species. Micro/nanobubbles have been shown to reverse hypoxic conditions and increase tissue oxygen levels. This review summarizes the synthesis methods and shell compositions of micro/nanobubbles and methods deployed for oxygen delivery. In addition, the shortcomings and prospects of engineering micro/nanobubbles are discussed for their potential use in photodynamic therapy.

Keywords

microbubbles; nanobubbles; photoacoustic imaging; ultrasonic imaging; ROS; oxygen delivery

Subject

Chemistry and Materials Science, Nanotechnology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.