You are currently viewing a beta version of our website. If you spot anything unusual, kindly let us know.

Preprint
Article

Fully Connected Conditional Random Fields for High-Resolution Remote Sensing Land Use/Land Cover Classification with Convolutional Neural Networks

Altmetrics

Downloads

463

Views

758

Comments

0

This version is not peer-reviewed

Submitted:

27 November 2018

Posted:

28 November 2018

You are already at the latest version

Alerts
Abstract
The interpretation of land use and land cover (LULC) is an important issue in the fields of high-resolution remote sensing (RS) image processing and land resource management. Fully training a new or existing convolutional neural network (CNN) architecture for LULC classification requires a large amount of remote sensing images. Thus, fine-tuning a pre-trained CNN for LULC detection is required. To improve the classification accuracy for high resolution remote sensing images, it is necessary to use another feature descriptor and to adopt a classifier for post-processing. A fully connected conditional random fields (FC-CRF), to use the fine-tuned CNN layers, spectral features, and fully connected pairwise potentials, is proposed for image classification of high-resolution remote sensing images. First, an existing CNN model is adopted, and the parameters of CNN are fine-tuned by training datasets. Then, the probabilities of image pixels belong to each class type are calculated. Second, we consider the spectral features and digital surface model (DSM) and combined with a support vector machine (SVM) classifier, the probabilities belong to each LULC class type are determined. Combined with the probabilities achieved by the fine-tuned CNN, new feature descriptors are built. Finally, FC-CRF are introduced to produce the classification results, whereas the unary potentials are achieved by the new feature descriptors and SVM classifier, and the pairwise potentials are achieved by the three-band RS imagery and DSM. Experimental results show that the proposed classification scheme achieves good performance when the total accuracy is about 85%.
Keywords: 
Subject: Computer Science and Mathematics  -   Computational Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated