Preprint
Article

This version is not peer-reviewed.

Carbon Nanocones with Curvature Effects Close to Vertex

A peer-reviewed article of this preprint also exists.

Submitted:

15 July 2018

Posted:

16 July 2018

You are already at the latest version

Abstract
The conventional rolled-up model for carbon nanocones assumes that the cone is constructed from a rolled-up graphene sheet joined seamlessly, which predicts five distinct vertex angles. This model completely ignores any effects due to the changing curvature and all bond lengths and bond angles are assumed to be those for the planar graphene sheet. Clearly curvature effects will become more important closest to the cone vertex, and especially so for the cones with the smaller apex angles. Here we construct carbon nanocones which in the assembled cone are assumed to comprise bond lengths and bond angles which are, as far as possible, equal throughout the structure at the same distance from the conical apex. Predicted bond angles and bond lengths are shown to agree well with those obtained by relaxing the conventional rolled-up model using the LAMMPS software. The major objective here is not simply to model physically realisable carbon nanocones for which numerical procedures are far superior, but rather to produce an improved model that takes into account curvature effects close to the vertex, and from which we may determine an analytical formula which represents an improvement on that for the conventional rolled-up model.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated