Preprint
Article

This version is not peer-reviewed.

Separation of Negatively Charged TiO2-Coated Polystyrene Beads in Microfluidic Device

Submitted:

17 September 2018

Posted:

18 September 2018

You are already at the latest version

Abstract
This research was presented the special designed microfluidic device generated for sperm separation based on assumption of different surface electrical charged of sperms X and Y. However, to avoid ethical problem, the microfluidic chip has been tested with the mimic electrical charged particles, TiO2-coated Polystyrene beads, (TiO2-coated Ps-beads), instead of spermatozoa. The work has been separated into three main parts. Firstly, the simply but efficient fabrication of negatively charged TiO2-coated Ps-beads has been presented. In addition, various characterization techniques such as X-ray diffraction (XRD), Tungsten Scanning Electron Microscopy (W-SEM) with energy-dispersive X-ray spectroscopy (EDS) mode, and X-ray Absorption Spectroscopy (XAS), have been reported in this work to elucidate the reasons behind the persistence of negatively charged on the surface of TiO2-coated Ps-beads. Results show that the fabricated TiO2-coated Ps-beads was partly coated in the mixed forms of amorphous Ti4+ and had caused a negatively charge to appear on the surface after fabrication and had sustained its electrical charged for long. Secondly, process of simulation and fabrication of microfluidic device was presented. Finally the negatively charged TiO2-coated Ps-beads were tested in this microfluidic devices. For design of microfluidic devices integrated with a couple of microelectrodes, the simulated structures were fabricated by photolithographic technique and tested with the Ps-beads. Percentage of validation for Ps-beads separation indicated that the 100 mm-distance-between-electrodes microfluidic device exhibits to be the highest performance prototype at 86.96%. For further confirmation, another model so called the single path prototype has been established. It is confirmed by 92.59% of validation for the utilization of the device. The successfully designed microfluidic devices can be examined with actual spermatozoa later. Furthermore, process to fabricate the negatively charged TiO2-coated Ps-beads can be established as testified samples for development of other microfluidic devices.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated