Preprint Article Version 1 This version is not peer-reviewed

Human Motion Recognition by Textile Sensor Based on Machine Learning Algorithms

Version 1 : Received: 13 July 2018 / Approved: 13 July 2018 / Online: 13 July 2018 (10:36:00 CEST)

A peer-reviewed article of this Preprint also exists.

Vu, C.C.; Kim, J. Human Motion Recognition by Textile Sensors Based on Machine Learning Algorithms. Sensors 2018, 18, 3109. Vu, C.C.; Kim, J. Human Motion Recognition by Textile Sensors Based on Machine Learning Algorithms. Sensors 2018, 18, 3109.

Journal reference: Sensors 2018, 18, 3109
DOI: 10.3390/s18093109

Abstract

Wearable sensors for human physiological monitoring have attracted tremendous interest from researchers in recent years. However, most of the research was only done in simple trials without any significant analytical algorithms. This study provides a way of recognizing human motion by combining textile stretch sensors based on single-walled carbon nanotubes (SWCNTs) and spandex fabric (PET/SP) and machine learning algorithms in a realistic applications. In the study, the performance of the system will be evaluated by identification rate and accuracy of the motion standardized. This research aims to provide a realistic motion sensing wearable products without unnecessary heavy and uncomfortable electronic devices.

Subject Areas

wearables; human motion monitoring; SWCNT; textiles; machine learning algorithm

Readers' Comments and Ratings (0)

Leave a public comment
Send a private comment to the author(s)
Rate this article
Views 0
Downloads 0
Comments 0
Metrics 0
Leave a public comment

×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.