Preprint
Article

This version is not peer-reviewed.

Improvement of Performance, Stability, and Continuity by Modified Size-Consistent Multipartitioning QM/MM Method

A peer-reviewed article of this preprint also exists.

Submitted:

04 July 2018

Posted:

04 July 2018

You are already at the latest version

Abstract
For condensed systems, the incorporation of quantum chemical solvent effects into molecular dynamics simulations has been a major concern. To this end, quantum mechanical/molecular mechanical (QM/MM) techniques are popular and powerful options to treat gigantic systems. However, they cannot be directly applied because of temporal and spatial discontinuity problems. To overcome these problems, in a previous study, we proposed a corrective QM/MM method, size-consistent multipartitioning (SCMP) QM/MM, and successfully demonstrated that, using SCMP, it is possible to perform stable molecular dynamics simulations by effectively taking into account solvent quantum chemical effects. The SCMP method is characterized by two original features: size-consistency of a QM region among all QM/MM partitioning and partitioning update. However, in our previous study, the performance was not fully elicited compared to the theoretical upper bound, and the optimal partitioning update protocol and parameters were not fully verified. To elicit the potential performance, in the present study, we simplified the theoretical framework and modified the partitioning protocol.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated