Zhang, K.; Zhang, P.; Wang, Z.-R.; Zhu, X.-L.; Lu, Y.-B.; Guan, C.-B.; Li, Y. DFT Simulations of the Vibrational Spectrum and Hydrogen Bonds of Ice XIV. Molecules2018, 23, 1781.
Zhang, K.; Zhang, P.; Wang, Z.-R.; Zhu, X.-L.; Lu, Y.-B.; Guan, C.-B.; Li, Y. DFT Simulations of the Vibrational Spectrum and Hydrogen Bonds of Ice XIV. Molecules 2018, 23, 1781.
Zhang, K.; Zhang, P.; Wang, Z.-R.; Zhu, X.-L.; Lu, Y.-B.; Guan, C.-B.; Li, Y. DFT Simulations of the Vibrational Spectrum and Hydrogen Bonds of Ice XIV. Molecules2018, 23, 1781.
Zhang, K.; Zhang, P.; Wang, Z.-R.; Zhu, X.-L.; Lu, Y.-B.; Guan, C.-B.; Li, Y. DFT Simulations of the Vibrational Spectrum and Hydrogen Bonds of Ice XIV. Molecules 2018, 23, 1781.
Abstract
It is always a difficult task to assign the peaks recorded from vibrational spectrum. Herein we explored a new pathway of density functional theory (DFT) simulation to present three kinds of spectra of ice XIV and can be referenced as inelastic neutron scattering (INS), IR, and Raman experimental spectrum. The INS spectrum is proportional to phonon density of states (PDOS) while the photon scattering signals reflect the normal vibration frequencies near the Brillouin zone (BZ) center. Based on good agreements with experimental data, we identified the relative frequency and made scientific assignments by normal vibration modes analysis. The debating two hydrogen bond (H-bond) peaks among ice phases from INS have been discussed and the dynamic process of H-bond vibrations were found to be classified into two basic modes. we deduce that two H-bond modes are a general rule among ice family and more works are ongoing to investigate this subject.
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.