Preprint
Article

This version is not peer-reviewed.

Engineering Cell Adhesion and Orientation via Ultrafast Laser Fabricated Microstructured Substrates

A peer-reviewed article of this preprint also exists.

Submitted:

24 June 2018

Posted:

25 June 2018

You are already at the latest version

Abstract
Cells take decisions on their responses depending on the stimuli received by the surrounding extracellular environment, that provides the essential cues at the micro and the nano-lengthscales required for adhesion, orientation, proliferation and differentiation. In this study, discontinuous microcones on silicon (Si) and continuous microgrooves on polyethylene terephthalate (PET) substrates were fabricated via ultrashort-pulsed laser irradiation at various fluences, resulting in microstructures with different roughness and geometrical characteristics. The topographical models attained were specifically developed to imitate the guidance and alignment of Schwann cells for oriented axonal regrowth, towards nerve regeneration. At the same time, positive replicas of the silicon microstructures formed were successfully reproduced, via soft lithography, on the biodegradable polymer poly(lactide-co-glycolide) (PLGA). The anisotropic continuous (PET) and discontinuous (PLGA replicas) microstructured polymeric substrates were assessed in terms of their influence on the Schwann cells responses. It is shown that the developed micropatterned substrates enable control over the cellular adhesion, proliferation and orientation and are thus useful to engineer cell alignment in vitro. This property could be potentially useful in the fields of neural tissue engineering and for dynamic microenvironment systems that simulate in vivo conditions.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated