Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Linking Temperature, Cation Concentration and Water Activity for the B to Z Conformational Transition in DNA

Version 1 : Received: 18 June 2018 / Approved: 19 June 2018 / Online: 19 June 2018 (11:37:10 CEST)

A peer-reviewed article of this Preprint also exists.

Ferreira, J.M.; Sheardy, R.D. Linking Temperature, Cation Concentration and Water Activity for the B to Z Conformational Transition in DNA. Molecules 2018, 23, 1806. Ferreira, J.M.; Sheardy, R.D. Linking Temperature, Cation Concentration and Water Activity for the B to Z Conformational Transition in DNA. Molecules 2018, 23, 1806.

Abstract

High concentrations of Na+ or [Co(NH3)6]3+ can induce the B to Z conformational transition in alternating (dC-dG) oligo and polynucleotides. The use of short DNA oligomers (dC-dG)4 and (dm5C-dG)4 as models can allow a thermodynamic characterization of the transition. Both form right handed double helical structures (B-DNA) in standard phosphate buffer with 115 mM Na+ at 25 oC. However, at 2.0 M Na+ or 200 mM [Co(NH3)6]3+, (dm5C-dG)4 assumes a left handed double helical structure (Z-DNA) while the unmethylated (dC-dG)4 analogue remains right handed under those conditions. We have previously demonstrated that the enthalpy of the transition at 25 oC for either inducer can be determined using isothermal titration calorimetry (ITC) [Ferreira, J. M. & Sheardy, R. D., Biophys. J. 2006, 91, 1–7]. Here, ITC is used to investigate the linkages between temperature, water activity and DNA conformation. We found that the determined enthalpy for each titration varied linearly with temperature allowing determination of the heat capacity change (DCp) between the initial and final states. As expected, the DCp values were dependent upon the cation (i.e. Na+ vs [Co(NH3)6]3+) as well as the sequence of the DNA oligomer (i. e., methylated vs unmethylated). Osmotic stress experiments were carried out to determine the gain or loss of water by the oligomer induced by the titration. The results are discussed in terms of solvent accessible surface areas, electrostatic interactions and the role of water.

Keywords

B-DNA; Z-DNA; circular dichroism; calorimetry; enthalpy; conformational transitions; heat capacity

Subject

Chemistry and Materials Science, Physical Chemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.