Preprint
Article

Software Defined Networks in Industrial Automation

Altmetrics

Downloads

807

Views

374

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

08 June 2018

Posted:

08 June 2018

You are already at the latest version

Alerts
Abstract
Trends such as Industrial Internet of Things (IIoT) and Industry 4.0 have increased the need to use powerfull network technologies in industrial automation. The growing communication in industrial automation is harnessing the productivity and efficiency of manufacturing and process automation with minimum human intervention. Due to the ongoing evolution of industrial networks from Fieldbus technologies to Ethernet, the new opportunity has emerged to integrate the Software Defined Networking (SDN) technique. In this paper, we provide a brief overview of SDN in the domain of industrial automation. We propose a network architecture called Software Defined Industrial Automation Network (SDIAN), with the objective of improving network scalability and efficiency. To match the specific considerations and requirements of having a deterministic system in an industrial network, we propose two solutions for flow creation: Pro-active Flow Installation Scheme (PFIS) and Hybrid Flow-Installation Scheme (HFIS). We analytically quantify the proposed solutions in alleviating the overhead incurred from the flow setup cost. The analytical model is verified through monte carlo simulations. We also evaluate the SDIAN architecture and analyze the network performance of the modified topology using an emulator called Mininet. We further list and motivate SDIAN features and in particular report on an experimental food processing plant demonstration featuring Raspberry PIs (RPIs) instead of traditional Programmable Logic Controllers (PLCs). Our demonstration exemplifies the characteristics of SDIAN.
Keywords: 
Subject: Computer Science and Mathematics  -   Information Systems
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated