Preprint
Article

This version is not peer-reviewed.

Sumudu Transform of Dixon Elliptic Functions With Non-Zero Modulus as Quasi C Fractions and Its Hankel Determinants

Submitted:

06 June 2018

Posted:

06 June 2018

You are already at the latest version

Abstract
Sumudu transform of the Dixon elliptic function with non zero modulus a ≠ 0 for arbitrary powers smN(x,a) ; N ≥ 1 ; smN(x,a)cm(x,a) ; N ≥ 0 and smN(x,a)cm2(x,a) ; N ≥ 0 is given by product of Quasi C fractions. Next by assuming denominators of Quasi C fraction to 1 and hence applying Heliermann correspondance relating formal power series (Maclaurin series of Dixon elliptic functions) and regular C fraction, Hankel determinants are calculated and showed by taking a = 0 gives the Hankel determinants of regular C fraction. The derived results were back tracked to the Laplace transform of sm(x,a) ; cm(x,a) and sm(x,a)cm(x,a).
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated