Preprint Article Version 1 This version is not peer-reviewed

Early Developmental Exposure to General Anesthetic Agents in Primary Neuron Culture Disrupts Synapse Formation via Actions on the mTOR Pathway

Version 1 : Received: 5 June 2018 / Approved: 6 June 2018 / Online: 6 June 2018 (10:36:51 CEST)

How to cite: Xu, J.; Mathena, R.P.; Xu, M.; Wang, Y.; Chang, C.; Fang, Y.; Zhang, P.; Johns, R.A.; Mintz, C.D. Early Developmental Exposure to General Anesthetic Agents in Primary Neuron Culture Disrupts Synapse Formation via Actions on the mTOR Pathway. Preprints 2018, 2018060083 (doi: 10.20944/preprints201806.0083.v1). Xu, J.; Mathena, R.P.; Xu, M.; Wang, Y.; Chang, C.; Fang, Y.; Zhang, P.; Johns, R.A.; Mintz, C.D. Early Developmental Exposure to General Anesthetic Agents in Primary Neuron Culture Disrupts Synapse Formation via Actions on the mTOR Pathway. Preprints 2018, 2018060083 (doi: 10.20944/preprints201806.0083.v1).

Abstract

Human epidemiologic studies and laboratory investigations in animal models suggest that exposure to general anesthetic agents (GAs) have harmful effects on brain development. The mechanism underlying this putative iatrogenic condition is not clear and there are currently no accepted strategies for prophylaxis or treatment. Recent evidence suggests that anesthetics might cause persistent deficits in synaptogenesis by disrupting key events in neurodevelopment. Using an in vitro model consisting of dissociated primary cultured mouse neurons we demonstrate abnormal pre- and post-synaptic marker expression after a clinically relevant isoflurane anesthesia exposure conducted during neuron development. We find that pharmacologic inhibition of the mechanistic target of rapamycin (mTOR) pathway can reverse the observed changes. Isoflurane exposure increases expression of phospho-S6, a marker of mTOR pathway activity, in a concentration-dependent fashion and this effect occurs throughout neuronal development. The mTOR 1 complex (mTORC1) and the mTOR 2 complex (mTORC2) branches of the pathway are both activated by isoflurane exposure and this is reversible with branch-specific inhibitors. Upregulation of mTOR is also seen with sevoflurane and propofol exposure, suggesting that this mechanism of developmental anesthetic neurotoxicity may occur with all the commonly used GAs in pediatric practice. We conclude that GAs disrupt the development of neurons during development by activating a well-defined neurodevelopmental disease pathway and that this phenotype can be reversed by pharmacologic inhibition.

Subject Areas

anesthesia; neurotoxicity; synapse; mTOR; neurodevelopment

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.