Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Computational Insight into the Effect of Natural Compounds on the Destabilization of Preformed Amyloid-β(1-40) Fibrils

Version 1 : Received: 25 May 2018 / Approved: 27 May 2018 / Online: 27 May 2018 (13:09:22 CEST)

A peer-reviewed article of this Preprint also exists.

Tavanti, F.; Pedone, A.; Menziani, M.C. Computational Insight into the Effect of Natural Compounds on the Destabilization of Preformed Amyloid-β(1–40) Fibrils. Molecules 2018, 23, 1320. Tavanti, F.; Pedone, A.; Menziani, M.C. Computational Insight into the Effect of Natural Compounds on the Destabilization of Preformed Amyloid-β(1–40) Fibrils. Molecules 2018, 23, 1320.

Abstract

One of the principal hallmarks of Alzheimer’s disease (AD) is related to the aggregation of amyloid-β fibrils in an insoluble form in the brain, also known as amyloidosis. Therefore, a prominent therapeutic strategy against AD consists either in blocking the amyloid aggregation and/or destroying the already formed aggregates. Natural products have shown significant therapeutic potential as amyloid inhibitors from in vitro studies as well as in vivo animal tests. In this study, the interaction of five natural biophenols (curcumin, dopamine, (-)-Epigallocatechin-3-gallate, Quercetin, and Rosmarinic acid) with the amyloid-β(1-40) fibrils has been studied through computational simulations. The results allowed the identification and characterization of the different binding modalities of each compounds and their consequences on fibril dynamics and aggregation. It emerges that the lateral aggregation of the fibrils is strongly influenced by the intercalation of the ligands, which modulate the double-layered structure stability.

Keywords

molecular dynamics simulation; biophenols; natural compounds; amyloid fibrils; Alzheimer’s disease; ligand-protofiber interactions

Subject

Chemistry and Materials Science, Theoretical Chemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.