Preprint
Article

On a Class of Hermite-Obrechkoff One-Step Methods with Continuous Spline Extension

This version is not peer-reviewed.

Submitted:

23 May 2018

Posted:

24 May 2018

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
The class of A-stable symmetric one-step Hermite-Obrechkoff (HO) methods introduced in [1] for dealing with Initial Value Problems is analyzed. Such schemes have the peculiarity of admitting a multiple knot spline extension collocating the differential equation at the mesh points. As a new result, it is shown that these maximal order schemes are conjugate symplectic which is a benefit when the methods have to be applied to Hamiltonian problems. Furthermore a new efficient approach for the computation of the spline extension is introduced, adopting the same strategy developed in [2] for the BS linear multistep methods. The performances of the schemes are tested in particular on some Hamiltonian benchmarks and compared with those of the Gauss Runge-Kutta schemes and Euler-Maclaurin formulas of the same order.
Keywords: 
Initial Value Problems; One-step Methods; Hermite-Obrechkoff methods; symplecticity; B–Splines; BS Methods
Subject: 
Computer Science and Mathematics  -   Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Altmetrics

Downloads

542

Views

348

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated