Breternitz, J.; Godula-Jopek, A.; Gregory, D.H. Ni(NH3)2(NO3)2—A 3-D Network through Bridging Nitrate Units Isolated from the Thermal Decomposition of Nickel Hexammine Dinitrate. Inorganics2018, 6, 59.
Breternitz, J.; Godula-Jopek, A.; Gregory, D.H. Ni(NH3)2(NO3)2—A 3-D Network through Bridging Nitrate Units Isolated from the Thermal Decomposition of Nickel Hexammine Dinitrate. Inorganics 2018, 6, 59.
Breternitz, J.; Godula-Jopek, A.; Gregory, D.H. Ni(NH3)2(NO3)2—A 3-D Network through Bridging Nitrate Units Isolated from the Thermal Decomposition of Nickel Hexammine Dinitrate. Inorganics2018, 6, 59.
Breternitz, J.; Godula-Jopek, A.; Gregory, D.H. Ni(NH3)2(NO3)2—A 3-D Network through Bridging Nitrate Units Isolated from the Thermal Decomposition of Nickel Hexammine Dinitrate. Inorganics 2018, 6, 59.
Abstract
Nickel nitrate diammine, Ni(NH3)2(NO3)2, can be synthesised from the thermal decomposition of the nickel nitrate hexammine, Ni[(NH3)6](NO3)2. The hexammine decomposes in 2 distinct steps; the first releases 4 equivalents of ammonia while the second involves the release of NOx, N2 and H2O to yield NiO. The intermediate diammine compound can be isolated following the first deammoniation step or synthesised as a single phase from the hexammine under vacuum. Powder X-ray diffraction (PXD) experiments have allowed the structure of Ni(NH3)2(NO3)2 to be solved for the first time. The compound crystallises in orthorhombic space group Pca21 (a = 11.0628 (5) Å, b = 6.0454 (3) Å, c = 9.3526 (4) Å; Z = 4) and contains 11 non-hydrogen atoms in the asymmetric unit. Fourier Transform Infrared (FTIR) spectroscopy demonstrates that the bonding in the ammine is consistent with the structure determined by PXD.
Chemistry and Materials Science, Inorganic and Nuclear Chemistry
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.