Preprint
Article

FMSP-Nanoparticles Induced Cell Death on Human Breast Adenocarcinoma Cell Line (MCF-7 cells): Morphometric Analysis

Submitted:

14 May 2018

Posted:

15 May 2018

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Breast cancer treatment mostly revolved around radiation therapy and surgical interventions, these treatments doesn’t provide satisfactory relief to the patients and carry unmanageable side-effects. Nanomaterials show promising results in treating cancer cells and have many advantages such as high biocompatibility, bioavailability and effective therapeutic capabilities. Interestingly, fluorescent magnetic nanoparticles have been used in many biological and diagnostic applications, but there is no report of use of fluorescent magnetic submicronic polymer nanoparticles (FMSP-nanoparticles) in the treatment of human breast cancer cells. In the present study, we have tested the effect FMSP-nanoparticles on human breast cancer cells (MCF-7). We have tested different concentrations (1.25µg/1mL, 12.5µg/mL and 50µg/1mL) of FMSP-nanoparticles in MCF-7 cells and evaluated the nanoparticles response morphometrically. Our results revealed that FMSP-nanoparticles produced a concentration dependent effect on the cancer cells, dose of 1.25µg/mL produced no significant effect on the cancer cell morphology and cell death, whereas dosages of 12.5µg/mL and 50µg/mL respectively showed significant nuclear augmentation, disintegration, chromatic condensation followed by dose dependent cell death. Our results demonstrate FMSP-nanoparticles have ability to induce cell death in MCF-7 cells and may be considered as a potential anti-cancer agent for breast cancer treatments.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

458

Views

350

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated