Preprint
Article

This version is not peer-reviewed.

Automated Hertbeat Abnormality Detection Using Realtime R-Assisted Lightweight Feature Extraction Algorithm

Submitted:

14 April 2018

Posted:

16 April 2018

You are already at the latest version

Abstract
Automated Electrocardiogram (ECG) processing is an important technique which helps in identifying abnormalities in the heart before any formal diagnosis. This research presents a real-time and lightweight R-assisted feature extraction algorithm and a heartbeat classification scheme which achieves highly accurate abnormality detection. In the proposed algorithm, we extract fifteen features from each heartbeat taken from raw Lead-II ECG signals. The features carry medically valuable information such as locations, amplitude and energy of ECG waves (P, Q, R, S, T waves) which are then used for detection of any abnormality that might be present in the heartbeat using various classification algorithms. We have used four popular databases from Physionet and extracted ten thousand ECG signals from each for training the models and benchmarking results. Four classification models i.e. Naïve Bays, k-Nearest Neighbor, Neural Network, Decision Tree were used for abnormality detection validating the efficiency of the system.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated