Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Secondary Metabolites-Derived Polymers: A Potential Approach to Diminish Microbial Infection

Version 1 : Received: 4 April 2018 / Approved: 5 April 2018 / Online: 5 April 2018 (03:32:08 CEST)

A peer-reviewed article of this Preprint also exists.

Al-Jumaili, A.; Kumar, A.; Bazaka, K.; Jacob, M.V. Plant Secondary Metabolite-Derived Polymers: A Potential Approach to Develop Antimicrobial Films. Polymers 2018, 10, 515. Al-Jumaili, A.; Kumar, A.; Bazaka, K.; Jacob, M.V. Plant Secondary Metabolite-Derived Polymers: A Potential Approach to Develop Antimicrobial Films. Polymers 2018, 10, 515.

Abstract

The persistent issue of bacterial and fungal colonization of artificial implantable materials and decreasing efficacy of conventional systemic antibiotics used to treat implant-associated infections has led to the development of a wide range of antifouling and antibacterial strategies. This article reviews one such strategy where inherently biologically active renewable resources, i.e. secondary plant metabolites (SPMs) and their naturally occurring combinations (i.e. essential oils) are used for surface functionalization and synthesis of polymer thin films. With a distinct mode of antibacterial activity, broad spectrum of action and diversity of available chemistries, secondary plant metabolites present an attractive alternative to conventional antibiotics. However, their conversion from liquid to solid phase without significant loss of activity is not trivial. Using select examples, this article shows how plasma techniques provide a sufficiently flexible and chemically reactive environment to enable the synthesis of biologically-active polymer-coatings from volatile renewable resources.

Keywords

volatile renewable resources; microbial infection; secondary plant metabolites; antimicrobial essential oils; biologically-active polymers; plasma-assisted technique

Subject

Chemistry and Materials Science, Surfaces, Coatings and Films

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.