The persistent issue of bacterial and fungal colonization of artificial implantable materials and decreasing efficacy of conventional systemic antibiotics used to treat implant-associated infections has led to the development of a wide range of antifouling and antibacterial strategies. This article reviews one such strategy where inherently biologically active renewable resources, i.e. secondary plant metabolites (SPMs) and their naturally occurring combinations (i.e. essential oils) are used for surface functionalization and synthesis of polymer thin films. With a distinct mode of antibacterial activity, broad spectrum of action and diversity of available chemistries, secondary plant metabolites present an attractive alternative to conventional antibiotics. However, their conversion from liquid to solid phase without significant loss of activity is not trivial. Using select examples, this article shows how plasma techniques provide a sufficiently flexible and chemically reactive environment to enable the synthesis of biologically-active polymer-coatings from volatile renewable resources.
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.