Preprint
Article

This version is not peer-reviewed.

Map Archive Mining: Visual-analytical Approaches to Explore Large Historical Map Collections

A peer-reviewed article of this preprint also exists.

Submitted:

13 April 2018

Posted:

17 April 2018

You are already at the latest version

Abstract
Historical maps constitute unique sources of retrospective geographic information. Recently, several map archives containing map series covering large spatial and temporal extents have been systematically scanned and made available to the public. The geographic information contained in such data archives allows extending geospatial analysis retrospectively beyond the era of digital cartography. However, given the large data volumes of such archives and the low graphical quality of older map sheets, the processes to extract geographic information need to be automated to the highest degree possible. In order to understand the salient characteristics, data quality variation, and potential challenges in large-scale information extraction tasks, preparatory analytical steps are required to efficiently assess spatio-temporal coverage, approximate map content, and spatial accuracy of such georeferenced map archives across different cartographic scales. Such preparatory steps are often neglected or ignored in the map processing literature but represent highly critical phases that lay the foundation for any subsequent computational analysis and recognition. In this contribution we demonstrate how such preparatory analyses can be conducted using classical analytical and cartographic techniques as well as visual-analytical data mining tools originating from machine learning and data science, exemplified for the United States Geological Survey topographic map and Sanborn fire insurance map archives.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated