Preprint
Article

Self-Tuning Method for Increasing Reliability in Obstacle Detection based on Internet-of-Things LiDAR Sensor Models

This version is not peer-reviewed.

Submitted:

28 February 2018

Posted:

28 February 2018

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Nowadays, the research and development of on-chip LiDAR sensors for vehicle collision avoidance is growing very fast. Therefore, the assessment of the reliability in obstacle detection using the information provided by LiDAR sensors has become a key issue to be explored by the scientific community. This paper presents the design and implementation of a self-tuning method in order to maximize the reliability of an Internet-of-Things sensors network and to minimize the number of sensors to localize with the required accuracy obstacles by a detection threshold. In order to achieve this goal, models that predict accuracy (i.e., prediction error) for object localization using data collected by LIDAR sensors are designed and implemented in Webots Automobile 3D simulation tool. The approach is based on combining different techniques. Firstly, point-cloud clustering technique and an error prediction model library composed by a multilayer perceptron neural network with backpropagation, k-nearest neighbors and linear regression are explored. Secondly the above-mentioned techniques for modeling are also combined with a supervised and reinforcement machine learning technique, Q-learning in order to minimize the detection threshold. In addition, a IoT driving assistance simulated scenario with a LiDAR sensor network is designed in order to validate the prediction model and the optimal configuration of the sensor network to guarantee reliability in obstacle localization. The results demonstrate that the self-tuning method is appropriate to increase the reliability of the sensor network whereas minimizing the detection threshold
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

679

Views

413

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated