Preprint
Article

This version is not peer-reviewed.

Quantifying Chaos by Various Computational Methods. Part 1: Simple Systems

A peer-reviewed article of this preprint also exists.

Submitted:

17 January 2018

Posted:

17 January 2018

You are already at the latest version

Abstract
The first part of the paper was aimed at analyzing the given nonlinear problem by different methods of computation of the Lyapunov exponents (Wolf method [1], Rosenstein method [2], Kantz method [3], method based on the modification of a neural network [4, 5], and the synchronization method [6, 7]) for the classical problems governed by difference and differential equations (Hénon map [8], hyper-chaotic Hénon map [9], logistic map [10], Rössler attractor [11], Lorenz attractor [12]) and with the use of both Fourier spectra and Gauss wavelets [13]. It was shown that a modification of the neural network method [4, 5] makes it possible to compute a spectrum of Lyapunov exponents, and then to detect a transition of the system regular dynamics into chaos, hyper-chaos, hyper hyper-chaos and deep chaos [14-16]. Different algorithms for computation of Lyapunov exponents were validated by comparison with the known dynamical systems spectra of the Lyapunov exponents. The carried out analysis helps comparatively estimate the employed methods in order to choose the most suitable/optimal one to study different kinds of dynamical systems and different classes of problems in both this and the next paper parts.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated