Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Impact of Climate Change on Water Resources Availability in a Trans-Boundary Basin in West Africa: Case of Sassandra

Version 1 : Received: 14 January 2018 / Approved: 17 January 2018 / Online: 17 January 2018 (11:09:07 CET)

A peer-reviewed article of this Preprint also exists.

Coulibaly, N.; Coulibaly, T.J.H.; Mpakama, Z.; Savané, I. The Impact of Climate Change on Water Resource Availability in a Trans-Boundary Basin in West Africa: The Case of Sassandra. Hydrology 2018, 5, 12. Coulibaly, N.; Coulibaly, T.J.H.; Mpakama, Z.; Savané, I. The Impact of Climate Change on Water Resource Availability in a Trans-Boundary Basin in West Africa: The Case of Sassandra. Hydrology 2018, 5, 12.

Abstract

In the context of climate change in West Africa characterized by a reduction of precipitation, this study was conducted to evaluate the impact of climate change on water resources from now to the end of the 21st century in the transboundary watershed of the Sassandra River shared by Guinea and Côte d’Ivoire. Historical and future climate (Representative Concentration Pathways or RCPs 4.5 and 8.5 scenarios) data were projected with the model. The Abdus Salam ICTP RegCM4 was used. The hydrological modeling of the river basin was carried out with the conceptual hydrological model, GR2M. This model is a monthly time steps model that allows the assessment of the discharge of the Sassandra River for each climate scenario according to the 2030 (2021–2040), 2050 (2041–2060), 2070 (2061–2080), and 2090 (2081–2100) horizons. The results showed a reduction of the annual discharge when compared to the baseline (1961–1980). For the RCP 4.5, the observed values went from –1.2% in 2030 to –2.3% in 2070 and rose to –2.1% in 2090. Concerning the RCP 8.5, we saw a variation from –4.2% to –7.9% in the 2030 and 2090 horizons, respectively. With the general decrease of rainfall in West Africa, it is appropriate to assess the impact on water resources on the largest rivers (Niger, Gambia, and Senegal) that irrigate the Sahelo-Saharian zone.

Keywords

climate change; GR2M; hydrologic modeling; transboundary river; West Africa

Subject

Environmental and Earth Sciences, Environmental Science

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.