Preprint Article Version 15 Preserved in Portico This version is not peer-reviewed

Atomic Structure and Binding of Carbon Atoms

Version 1 : Received: 5 January 2018 / Approved: 7 January 2018 / Online: 7 January 2018 (10:42:10 CET)
Version 2 : Received: 2 March 2018 / Approved: 2 March 2018 / Online: 2 March 2018 (14:37:34 CET)
Version 3 : Received: 14 April 2018 / Approved: 16 April 2018 / Online: 16 April 2018 (05:55:12 CEST)
Version 4 : Received: 8 July 2018 / Approved: 12 July 2018 / Online: 12 July 2018 (09:24:51 CEST)
Version 5 : Received: 29 July 2018 / Approved: 30 July 2018 / Online: 30 July 2018 (08:46:38 CEST)
Version 6 : Received: 25 September 2018 / Approved: 25 September 2018 / Online: 25 September 2018 (06:22:46 CEST)
Version 7 : Received: 14 December 2018 / Approved: 14 December 2018 / Online: 14 December 2018 (08:58:10 CET)
Version 8 : Received: 14 January 2019 / Approved: 15 January 2019 / Online: 15 January 2019 (07:01:56 CET)
Version 9 : Received: 16 May 2019 / Approved: 17 May 2019 / Online: 17 May 2019 (08:36:23 CEST)
Version 10 : Received: 2 June 2019 / Approved: 4 June 2019 / Online: 4 June 2019 (10:15:58 CEST)
Version 11 : Received: 14 January 2021 / Approved: 15 January 2021 / Online: 15 January 2021 (12:38:30 CET)
Version 12 : Received: 24 April 2022 / Approved: 25 April 2022 / Online: 25 April 2022 (06:14:04 CEST)
Version 13 : Received: 28 July 2022 / Approved: 29 July 2022 / Online: 29 July 2022 (02:57:38 CEST)
Version 14 : Received: 21 September 2022 / Approved: 22 September 2022 / Online: 22 September 2022 (07:21:18 CEST)
Version 15 : Received: 24 October 2022 / Approved: 24 October 2022 / Online: 24 October 2022 (04:52:17 CEST)
Version 16 : Received: 2 January 2023 / Approved: 3 January 2023 / Online: 3 January 2023 (08:35:12 CET)
Version 17 : Received: 21 August 2023 / Approved: 22 August 2023 / Online: 22 August 2023 (09:29:30 CEST)
Version 18 : Received: 9 March 2024 / Approved: 12 March 2024 / Online: 13 March 2024 (16:53:14 CET)

How to cite: Ali, M. Atomic Structure and Binding of Carbon Atoms. Preprints 2018, 2018010036. https://doi.org/10.20944/preprints201801.0036.v15 Ali, M. Atomic Structure and Binding of Carbon Atoms. Preprints 2018, 2018010036. https://doi.org/10.20944/preprints201801.0036.v15

Abstract

Many studies discuss carbon-based materials because of the versatility of carbon elements. Depending on the processing conditions of a carbon precursor, carbon changes state behavior. The electron transfer mechanism occurred to convert carbon from one state to another. In conversion, the dash-shaped energy bits involved transferring electrons to nearby unfilled states. The involved dash-shaped energy has partially conserved behavior. A transferring electron is also under partially conserved forces. Carbon atoms equally evolve and equally develop structures of one dimension, two dimensions, and four dimensions, respectively, when in the graphite, nanotube, and fullerene states. Here, the already associated dash-shaped energy bits bind the carbon atoms. A two-dimensional graphite structure or amorphous carbon structure also forms. The structural formations in diamond, lonsdaleite, and graphene state atoms involve different shaped bits of energy. The bit of energy has a shape like a golf stick. By involving four bits of golf-stick-shaped energy, all four electrons of the outer ring of the depositing diamond state atom undertake an additional clamp of all four energy knots of the outer ring of the deposited diamond state atom. A depositing diamond state atom binds to the deposited diamond state atom from the east-west surface to the south. Growth is from the south to the east-west surface, so the structure of the diamond is a tetra-electron topological structure. The lonsdaleite state atoms bind from the surface east-west to a bit south. However, in glassy carbon, the layers of gaseous, graphite, and lonsdaleite state atoms bind simultaneously. The order of these layers repeats in the growth process of glassy carbon. The carbon-based materials also study Mohs hardness. This study is very different from the previous ones on carbon materials.

Keywords

Carbon; Atomic structure; Electron dynamics; Potential energy; Binding

Subject

Chemistry and Materials Science, Materials Science and Technology

Comments (1)

Comment 1
Received: 24 October 2022
Commenter: Mubarak Ali
Commenter's Conflict of Interests: Author
Comment: The manuscript further connects with the literature and the work of other authors.
+ Respond to this comment

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 1


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.