Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

The Radiofrequency NMR Spectra of Lithium Salts in Water; Reevaluation of Nuclear Magnetic Moments for 6Li and 7Li Nuclei

Version 1 : Received: 11 December 2017 / Approved: 12 December 2017 / Online: 12 December 2017 (06:55:05 CET)

A peer-reviewed article of this Preprint also exists.

Makulski, W. The Radiofrequency NMR Spectra of Lithium Salts in Water; Reevaluation of Nuclear Magnetic Moments for 6Li and 7Li Nuclei. Magnetochemistry 2018, 4, 9. Makulski, W. The Radiofrequency NMR Spectra of Lithium Salts in Water; Reevaluation of Nuclear Magnetic Moments for 6Li and 7Li Nuclei. Magnetochemistry 2018, 4, 9.

Abstract

The LiCl and LiNO3 water solutions in the presence of small amounts of 3-helium have been investigated by means of multinuclear resonance spectroscopy. The resulting concentration dependences of the 3He, 6,7Li+, 14NO3¯ and 35Cl¯ resonance radiofrequencies are reported in the infinite limit. This data along with new theoretical corrections of shielding lithium ions was analyzed by a known NMR relationship method. Consequently, the nuclear magnetic moments of 6Li and 7Li were established against that of the helium-3 dipole moment: μ(6Li)=+0.822046(5)μN and μ(7Li)=+3.256418(20)μN. The new results were shown to be very close to the previously obtained values of the (ABMR) atomic beam magnetic resonance method. This experiment proves that our helium method is well suited for establishing dipole moments from NMR measurements performed in water solutions. This technique is especially valuable when gaseous substances of the needed element are not available. All shielding constants of species present in water solutions are consistent with new nuclear magnetic moments and these taken as a reference. Both techniques – NMR and ABMR – give practically the same results providing that all shielding corrections are properly made.

Keywords

6Li and 7Li nuclear magnetic moments; NMR liquid-phase studies; nuclear magnetic shielding constants

Subject

Chemistry and Materials Science, Physical Chemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.