Morozova, A.; Borodin, E.; Bratov, V.; Zherebtsov, S.; Belyakov, A.; Kaibyshev, R. Grain Refinement Kinetics in a Low Alloyed Cu–Cr–Zr Alloy Subjected to Large Strain Deformation. Materials2017, 10, 1394.
Morozova, A.; Borodin, E.; Bratov, V.; Zherebtsov, S.; Belyakov, A.; Kaibyshev, R. Grain Refinement Kinetics in a Low Alloyed Cu–Cr–Zr Alloy Subjected to Large Strain Deformation. Materials 2017, 10, 1394.
Abstract
The microstructure evolution and grain refinement kinetics of a solution treated Cu – 0.1Cr – 0.06Zr alloy during equal channel angular pressing (ECAP) at a temperature of 673 K via route BC were investigated. The microstructure change during plastic deformation was accompanied by the microband formation and an increase in the misorienations of strain-induced subboundaries. The refinement of initial coarse grains was considered as a result of continuous dynamic recrystallization. The dynamic recrystallization kinetics was discussed in terms of grain/subgrain boundary triple junction evolution. The strain dependence of the triple junctions of high-angle boundaries can be expressed by a modified Johnson-Mehl-Avrami-Kolmogorov relationship with a strain exponent of about 1.49. Severe plastic deformation by ECAP led to substantial strengthening of the Cu-0.1Cr-0.06Zr alloy. The yield strength increased from 60 MPa in the initial state to 445 MPa after the total strain of 12.
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.