Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

On the Effectiveness of Zeolite-Based Catalysts in the CO2 Recycling to DME: State of the Art and Perspectives

Version 1 : Received: 10 November 2017 / Approved: 11 November 2017 / Online: 11 November 2017 (01:16:47 CET)

A peer-reviewed article of this Preprint also exists.

Catizzone, E.; Bonura, G.; Migliori, M.; Frusteri, F.; Giordano, G. CO2 Recycling to Dimethyl Ether: State-of-the-Art and Perspectives. Molecules 2018, 23, 31. Catizzone, E.; Bonura, G.; Migliori, M.; Frusteri, F.; Giordano, G. CO2 Recycling to Dimethyl Ether: State-of-the-Art and Perspectives. Molecules 2018, 23, 31.

Abstract

Starting from the environmental issues related to global warming, climate change and reduction of greenhouse gas emissions, this review paper describes how CO2 recycling can represent a challenging strategy suitable to explore new concepts and opportunities for catalytic and industrial development. In this view, the production of dimethyl ether (DME) from catalytic hydrogenation of CO2 appears as a viable technology, able to meet also the ever-increasing need for alternative environmentally-friendly fuels and energy carriers. Basic considerations on thermodynamic aspects controlling DME production from CO2 are presented, then summarizing the main catalytic systems developed in such a field. Special attention is paid on the role assumed during last years by zeolite-based systems, either in the methanol-to-DME dehydration step or in the one-pot CO2-to-DME hydrogenation. On the whole, the productivity of DME results significantly to be dependent on several catalyst features, linked not only to the metal-oxide phase responsible for CO2 activation/hydrogenation, but also to specific properties of the zeolites (i.e., topology, porosity, surface area, acidity, interaction with active metals, distributions of metal particles, …) influencing activity and stability of hybridized bifunctional heterogeneous catalysts.

Keywords

CO2 hydrogenation; dimethyl ether; low-carbon processes; thermodynamics; catalysis; zeolites

Subject

Chemistry and Materials Science, Chemical Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.