Preprint Short Note Version 1 This version not peer reviewed

Di-Silicate Dental Ceramic Surface Preparation by 1070 nm Fiber Laser: Thermal and Ultrastructural Analysis

Version 1 : Received: 4 November 2017 / Approved: 5 November 2017 / Online: 5 November 2017 (11:47:29 CET)

A peer-reviewed article of this Preprint also exists.

Fornaini, C.; Poli, F.; Merigo, E.; Brulat-Bouchard, N.; El Gamal, A.; Rocca, J.-P.; Selleri, S.; Cucinotta, A. Disilicate Dental Ceramic Surface Preparation by 1070 nm Fiber Laser: Thermal and Ultrastructural Analysis. Bioengineering 2018, 5, 10. Fornaini, C.; Poli, F.; Merigo, E.; Brulat-Bouchard, N.; El Gamal, A.; Rocca, J.-P.; Selleri, S.; Cucinotta, A. Disilicate Dental Ceramic Surface Preparation by 1070 nm Fiber Laser: Thermal and Ultrastructural Analysis. Bioengineering 2018, 5, 10.

Journal reference: Bioengineering 2018, 5, 10
DOI: 10.3390/bioengineering5010010

Abstract

Background: Lithium di-silicate dental ceramics bonding, realized by using different resins, is strictly dependent on micro-mechanical retention and chemical adhesion. The aim of this in vitro study was to investigate the capability of a 1070 nm fiber laser for their surface treatment. Methods: Samples were irradiated by a pulsed fiber laser at 1070 nm with different parameters (Peak Power from 5 kW to 5 kW, RR 20 kHz, speed from 10 to 50 mm/s, total Energy Density from 1.3 to 27 kW/cm2) and the thermal elevation during the experiment was recorded by a Fiber Bragg Grating (FBG) temperature sensor. Subsequently, the surface modifications were analysed by optical microscope, Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). Results: With a Peak Power of 5 kW, RR of 20 kHz and speed of 50 mm/s, the microscopic observation of the irradiated surface showed increased roughness with small areas of melting and carbonization. EDS analysis revealed that, with these parameters, there are no evident differences between laser-processed samples and controls. Thermal elevation during laser irradiation ranged between 5 °C and 9 °C. Conclusions: 1070 nm fiber laser can be considered as a good device to increase the adhesion of Lithium di-silicate ceramics.

Subject Areas

di-silicate ceramics; fiber lasers; Fiber Bragg Grating; Energy Dispersive X-ray Spectroscopy

Readers' Comments and Ratings (0)

Leave a public comment
Send a private comment to the author(s)
Rate this article
Views 0
Downloads 0
Comments 0
Metrics 0
Leave a public comment

×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.