Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Advances in Single-Chain Nanoparticles for Catalysis Applications

Version 1 : Received: 28 September 2017 / Approved: 29 September 2017 / Online: 29 September 2017 (04:51:17 CEST)

A peer-reviewed article of this Preprint also exists.

Rubio-Cervilla, J.; González, E.; Pomposo, J.A. Advances in Single-Chain Nanoparticles for Catalysis Applications. Nanomaterials 2017, 7, 341. Rubio-Cervilla, J.; González, E.; Pomposo, J.A. Advances in Single-Chain Nanoparticles for Catalysis Applications. Nanomaterials 2017, 7, 341.

Abstract

Enzymes are the most efficient catalysts known working in an aqueous environment near room temperature. The folding of individual polymer chains to functional single-chain nanoparticles (SCNPs) offers many opportunities for the development of artificial enzyme-mimic catalysts showing both high catalytic activity and specificity. In this review, we highlight recent results obtained in the use of SCNPs as bioinspired, highly-efficient nanoreactors (3–30 nm) for the synthesis of a variety of nanomaterials (inorganic nanoparticles, quantum dots, carbon nanodots), polymers and chemical compounds, as well as nanocontainers for CO2 capture and release.

Keywords

nanoparticles; nanocontainers; catalysts

Subject

Chemistry and Materials Science, Polymers and Plastics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.