Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Calibrating the EGS Flow Stimulation Process for Basement Rock

Version 1 : Received: 16 September 2017 / Approved: 18 September 2017 / Online: 18 September 2017 (12:01:16 CEST)

A peer-reviewed article of this Preprint also exists.

Leary, P.; Malin, P.; Saarno, T.; Kukkonen, I. Prospects for Assessing Enhanced Geothermal System (EGS) Basement Rock Flow Stimulation by Wellbore Temperature Data. Energies 2017, 10, 1979. Leary, P.; Malin, P.; Saarno, T.; Kukkonen, I. Prospects for Assessing Enhanced Geothermal System (EGS) Basement Rock Flow Stimulation by Wellbore Temperature Data. Energies 2017, 10, 1979.

Abstract

We use Matlab 3D finite element fluid flow/transport modelling to simulate localized wellbore temperature events of order 0.05-0.1oC logged in Fennoscandia basement rock at ~ 1.5km depths. The temperature events are approximated as steady-state heat transport due to fluid draining from the crust into the wellbore via naturally occurring fracture-connectivity structures. Flow simulation is based on the empirics of spatially-correlated fracture-connectivity fluid flow widely attested by well-log, well-core, and well-production data. Matching model wellbore-centric radial temperature profiles to a 2D analytic expression for steady-state radial heat transport with Peclet number Pe ≡ r0φv0/D (r0 = wellbore radius, v0 = Darcy velocity at r0, φ = ambient porosity, D = rock-water thermal diffusivity), gives Pe ~ 10-15 for fracture-connectivity flow intersecting the well, and Pe ~ 0 for ambient crust. Darcy flow for model Pe ~ 10 at radius ~ 10 meters from the wellbore gives permeability estimate κ ~ 0.02Darcy for flow driven by differential fluid pressure between least principal crustal stress pore pressure and hydrostatic wellbore pressure. Model temperature event flow permeability κm ~ 0.02Darcy is related to well-core ambient permeability κ ~ 1µDarcy by empirical poroperm relation κm ~ κ exp(αmφ) for φ ~ 0.01 and αm ~ 1000. Our modelling of wellbore temperature events calibrates the concept of reactivating fossilized fracture-connectivity flow for EGS permeability stimulation of basement rock.

Keywords

EGS; crustal permeability; finite element flow modelling; crustal wellbore temperatures; wellbore injection; well logs; well core

Subject

Environmental and Earth Sciences, Geophysics and Geology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.