Preprint
Article

This version is not peer-reviewed.

Extended Dynamical Equations of the Period Vectors of Crystals under Constant External Stress to Many-body Interactions

Submitted:

08 August 2018

Posted:

09 August 2018

You are already at the latest version

Abstract
Since crystals are made of periodic structures in space, predicting their three period vectors starting from any values based on the inside interactions is a basic theoretical physics problem. For the general situation where crystals are under constant external stress, we derived dynamical equations of the period vectors in the framework of Newtonian dynamics, for pair potentials recently (doi:/10.1139/cjp-2014-0518). The derived dynamical equations show that the period vectors are driven by the imbalance between the internal and external stresses. This presents a physical process where when the external stress changes, the crystal structure changes accordingly, since the original internal stress can not balance the external stress. The internal stress has both a full kinetic energy term and a full interaction term. It is extended to many-body interactions in this paper. As a result, all conclusions in the pair-potential case also apply for many-body potentials.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated