Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Soft Smart Garments for Lower Limb Joint Position Analysis

Version 1 : Received: 4 September 2017 / Approved: 5 September 2017 / Online: 5 September 2017 (03:44:27 CEST)

A peer-reviewed article of this Preprint also exists.

Totaro, M.; Poliero, T.; Mondini, A.; Lucarotti, C.; Cairoli, G.; Ortiz, J.; Beccai, L. Soft Smart Garments for Lower Limb Joint Position Analysis. Sensors 2017, 17, 2314. Totaro, M.; Poliero, T.; Mondini, A.; Lucarotti, C.; Cairoli, G.; Ortiz, J.; Beccai, L. Soft Smart Garments for Lower Limb Joint Position Analysis. Sensors 2017, 17, 2314.

Abstract

Detection of human movement requires lightweight, flexible systems to detect mechanical parameters (like strain and pressure) not interfering with user activity, and that he/she can wear comfortably. In this work we address such multifaceted challenge with the development of smart garments for lower limb motion detection, like a textile kneepad and anklet in which soft sensors and readout electronics are embedded for detecting movement of the specific joint. Stretchable capacitive sensors with a three-electrode configuration are built combining conductive textiles and elastomeric layers, and distributed at knee and ankle. They show an excellent behavior in the ~30% strain range, hence the correlation between their responses and the optically tracked Euler angles is allowed for basic lower limb movements. Bending during knee flexion/extension is detected, and it is discriminated from any external contact by implementing in real time a low computational algorithm. The smart anklet is designed to address joint motion detection in and off the sagittal plane. In this work, ankle dorsi/plantar flexion, adduction/abduction, and rotation are retrieved. Both smart garments show a high accuracy in movement detection, with a RMSE less than 4° in the worst case.

Keywords

wearable system; strain sensor; bending; soft tactile sensor; textile; capacitive sensor; exoskeleton; human motion monitoring

Subject

Engineering, Electrical and Electronic Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.