Preprint Article Version 1 This version is not peer-reviewed

Soft Smart Garments for Lower Limb Joint Position Analysis

Version 1 : Received: 4 September 2017 / Approved: 5 September 2017 / Online: 5 September 2017 (03:44:27 CEST)

A peer-reviewed article of this Preprint also exists.

Totaro, M.; Poliero, T.; Mondini, A.; Lucarotti, C.; Cairoli, G.; Ortiz, J.; Beccai, L. Soft Smart Garments for Lower Limb Joint Position Analysis. Sensors 2017, 17, 2314. Totaro, M.; Poliero, T.; Mondini, A.; Lucarotti, C.; Cairoli, G.; Ortiz, J.; Beccai, L. Soft Smart Garments for Lower Limb Joint Position Analysis. Sensors 2017, 17, 2314.

Journal reference: Sensors 2017, 17, 2314
DOI: 10.3390/s17102314

Abstract

Detection of human movement requires lightweight, flexible systems to detect mechanical parameters (like strain and pressure) not interfering with user activity, and that he/she can wear comfortably. In this work we address such multifaceted challenge with the development of smart garments for lower limb motion detection, like a textile kneepad and anklet in which soft sensors and readout electronics are embedded for detecting movement of the specific joint. Stretchable capacitive sensors with a three-electrode configuration are built combining conductive textiles and elastomeric layers, and distributed at knee and ankle. They show an excellent behavior in the ~30% strain range, hence the correlation between their responses and the optically tracked Euler angles is allowed for basic lower limb movements. Bending during knee flexion/extension is detected, and it is discriminated from any external contact by implementing in real time a low computational algorithm. The smart anklet is designed to address joint motion detection in and off the sagittal plane. In this work, ankle dorsi/plantar flexion, adduction/abduction, and rotation are retrieved. Both smart garments show a high accuracy in movement detection, with a RMSE less than 4° in the worst case.

Subject Areas

wearable system; strain sensor; bending; soft tactile sensor; textile; capacitive sensor; exoskeleton; human motion monitoring

Readers' Comments and Ratings (0)

Leave a public comment
Send a private comment to the author(s)
Rate this article
Views 0
Downloads 0
Comments 0
Metrics 0
Leave a public comment

×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.