Preprint Article Version 1 This version is not peer-reviewed

A Compact 2-DOF Piezoelectric-Driven Platform Based on “Z-Shaped” Flexure Hinges

Version 1 : Received: 31 July 2017 / Approved: 3 August 2017 / Online: 3 August 2017 (05:50:16 CEST)

A peer-reviewed article of this Preprint also exists.

Li, J.; Liu, H.; Zhao, H. A Compact 2-DOF Piezoelectric-Driven Platform Based on “Z-Shaped” Flexure Hinges. Micromachines 2017, 8, 245. Li, J.; Liu, H.; Zhao, H. A Compact 2-DOF Piezoelectric-Driven Platform Based on “Z-Shaped” Flexure Hinges. Micromachines 2017, 8, 245.

Journal reference: Micromachines 2017, 8, 245
DOI: 10.3390/mi8080245

Abstract

A compact 2-DOF (two degrees of freedom) piezoelectric-driven platform for 3D cellular bio-assembly systems has been proposed based on “Z-shaped” flexure hinges. Multiple linear motions with high resolution both in x and y directions are achieved. The “Z-shaped” flexure hinges and the parallel-six-connecting-rods structure are utilized to obtain the lowest working stress while compared with other types of flexure hinges. In order to achieve the optimized structure, matrix-based compliance modeling (MCM) method and finite element method (FEM) are used to evaluate both the static and dynamic performances of the proposed 2-DOF piezoelectric-driven platform. Experimental results indicate that the maximum motion displacements for x stage and y stage are lx=17.65 μm and ly=15.45 μm, respectively. The step response time for x stage and y stage are tx=1.7 ms and ty =1.6 ms, respectively.

Subject Areas

piezoelectric; actuator; nano-positioning; flexure hinge; FEM

Readers' Comments and Ratings (0)

Leave a public comment
Send a private comment to the author(s)
Rate this article
Views 0
Downloads 0
Comments 0
Metrics 0
Leave a public comment

×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.