Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

A Compact 2-DOF Piezoelectric-Driven Platform Based on “Z-Shaped” Flexure Hinges

Version 1 : Received: 31 July 2017 / Approved: 3 August 2017 / Online: 3 August 2017 (05:50:16 CEST)

A peer-reviewed article of this Preprint also exists.

Li, J.; Liu, H.; Zhao, H. A Compact 2-DOF Piezoelectric-Driven Platform Based on “Z-Shaped” Flexure Hinges. Micromachines 2017, 8, 245. Li, J.; Liu, H.; Zhao, H. A Compact 2-DOF Piezoelectric-Driven Platform Based on “Z-Shaped” Flexure Hinges. Micromachines 2017, 8, 245.

Abstract

A compact 2-DOF (two degrees of freedom) piezoelectric-driven platform for 3D cellular bio-assembly systems has been proposed based on “Z-shaped” flexure hinges. Multiple linear motions with high resolution both in x and y directions are achieved. The “Z-shaped” flexure hinges and the parallel-six-connecting-rods structure are utilized to obtain the lowest working stress while compared with other types of flexure hinges. In order to achieve the optimized structure, matrix-based compliance modeling (MCM) method and finite element method (FEM) are used to evaluate both the static and dynamic performances of the proposed 2-DOF piezoelectric-driven platform. Experimental results indicate that the maximum motion displacements for x stage and y stage are lx=17.65 μm and ly=15.45 μm, respectively. The step response time for x stage and y stage are tx=1.7 ms and ty =1.6 ms, respectively.

Keywords

piezoelectric; actuator; nano-positioning; flexure hinge; FEM

Subject

Engineering, Mechanical Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.