Preprint
Review

This version is not peer-reviewed.

Ultraviolet Imaging of Volcanic Plumes: A New Paradigm in Volcanology

A peer-reviewed article of this preprint also exists.

Submitted:

26 July 2017

Posted:

26 July 2017

You are already at the latest version

Abstract
Ultraviolet imaging has been applied in volcanology over the last ten years or so. This provides considerably higher temporal and spatial resolution volcanic gas emission rate data than available previously, enabling the volcanology community to investigate a range of far faster plume degassing processes, than achievable hitherto. To date this has covered rapid oscillations in passive degassing through conduits and lava lakes, as well as puffing and explosions, facilitating exciting connections to be made for the first time between previously rather separate sub disciplines of volcanology. Firstly, there has been corroboration between geophysical and degassing datasets at ≈ 1 Hz expediting more holistic investigations of volcanic source-process behaviour. Secondly, there has been the combination of surface observations of gas release, with fluid dynamic models (numerical, mathematical and laboratory) for gas flow in conduits, in attempts to link subterranean driving flow processes to surface activity types. There has also been considerable research and development concerning the technique itself, covering error analysis and most recently adaptation of smartphone sensors for this application, to deliver gas fluxes at a significantly lower instrumental price point than possible previously. At this decadal juncture in the application of UV imaging in volcanology, this article provides an overview of what has been achieved to date as well as a forward look to potential future research directions, in particular covering the first use of UV cameras to generate volcanic gas composition ratio imagery.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated