Preprint
Article

The Class of (p,q)-spherical Distributions

Altmetrics

Downloads

606

Views

592

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

18 July 2017

Posted:

19 July 2017

You are already at the latest version

Alerts
Abstract
For evaluating probabilities of arbitrary random events with respect to a given multivariate probability distribution, specific techniques are of great interest. An important two-dimensional high risk limit law is the Gauss-exponential distribution whose probabilities can be dealt with based upon the Gauss-Laplace law. The latter will be considered here as an element of the newly introduced family of (p,q)-spherical distributions. Based upon a suitably defined non-Euclidean arc-length measure on (p,q)-circles we prove geometric and stochastic representations of these distributions and correspondingly distributed random vectors, respectively. These representations allow dealing with the new probability measures similarly like with elliptically contoured distributions and more general homogeneous star-shaped ones. This is demonstrated at hand of a generalization of the Box-Muller simulation method. En passant, we prove an extension of the sector and circle number functions.
Keywords: 
Subject: Computer Science and Mathematics  -   Applied Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated