Preprint
Article

This version is not peer-reviewed.

UniMiB SHAR: A Dataset for Human Activity Recognition Using Acceleration Data from Smartphones

A peer-reviewed article of this preprint also exists.

Submitted:

05 June 2017

Posted:

06 June 2017

Read the latest preprint version here

Abstract
Smartphones, smartwatches, fitness trackers, and ad-hoc wearable devices are being increasingly used to monitor human activities. Data acquired by the hosted sensors are usually processed by machine-learning-based algorithms to classify human activities. The success of those algorithms mostly depends on the availability of training (labeled) data that, if made publicly available, would allow researchers to make objective comparisons between techniques. Nowadays, publicly available data sets are few, often contain samples from subjects with too similar characteristics, and very often lack of specific information so that is not possible to select subsets of samples according to specific criteria. In this article, we present a new smartphone accelerometer dataset designed for activity recognition. The dataset includes 11,771 activities performed by 30 subjects of ages ranging from 18 to 60 years. Activities are divided in 17 fine grained classes grouped in two coarse grained classes: 9 types of activities of daily living (ADL) and 8 types of falls. The dataset has been stored to include all the information useful to select samples according to different criteria, such as the type of ADL performed, the age, the gender, and so on. Finally, the dataset has been benchmarked with two different classifiers and with different configurations. The best results are achieved with k-NN classifying ADLs only, considering personalization, and with both windows of 51 and 151 samples.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated