Preprint
Article

This version is not peer-reviewed.

Improvement and Validation of Ranging Accuracy with YG-13A

Submitted:

25 April 2017

Posted:

25 April 2017

You are already at the latest version

Abstract
YG-13A represents the highest level of Chinese SAR satellites to date. In this paper, we report on experiments conducted to improve and validate ranging accuracy with YG-13A. We analyze the error sources in the YG-13A ranging system, such as atmospheric path delay, and transceiver channel delay. A real-time atmospheric delay correction model is established to calculate the atmospheric path delay, considering the troposphere delay and ionosphere delay. Six corner reflectors (CRs) were set up to ensure the accuracy of validation methods. Pixel location accuracies of up to 0.479-m standard deviation can be achieved after a complete calibration. We further demonstrate that the adjustment of the CRs can cause a marginal loss of ranging precision. After eliminating this error, the ranging accuracy is improved to 0.237 m. For YG-13A, a single frequency GPS receiver is used and the orbital nominal accuracy is 0.3 m, which is the biggest factor restricting its ranging accuracy. Our results show that the ranging accuracy of YG-13A can achieve decimeter-level, which is lower than centimeter-level accuracy with TerraSAR-X loading a dual frequency GPS. YG-13A has great convenience in terms of access to control points and target location that does not depend on ground equipment.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated